INTERNAL DISK PHOTOEVAPORATION STELLAR MASS DEPENDENCE

GIOVANNI PICOGNA - LMU MUNICH

THE ROLE OF MAGNETIC FIELDS IN DISK FORMATION, EVOLUTION, AND PLANET FORMATION CORE2DISK III - 5TH OCTOBER 2023

COLLABORATORS: BARBARA ERCOLANO MICHAEL WEBER KRISTINA MONSCH ELEFTHERIA SARAFIDOU **OLIVER GRESSEL** JEREMY DRAKE THOMAS PREIBISCH CATHERINE ESPAILLAT CHRISTIAN RAB TOMMASO GRASSI ANDREW SELLEK

X-RAY PHOTOEVAPORATION AS A FUNCTION OF STELLAR MASS

LUDWIG-

MAXIMILIANS-
UNIVERSITÄT 1ÜNCHEN

STELLAR PROPERTIES **SECURE AND SET EXECUTES** 3

Stellar parameters from Siess et al. 2000 with age 1 Myr and metallicity Z=0.02, no overshooting

DISK PROPERTIES

- $R_{\text{out}} = 400$ au
- ·
/ $\dot{M}_{\text{acc}} = 10^{-8} M_{\odot} yr^{-1}$
- $\cdot i = 60^{\circ}$
- Disk atmosphere:
	- Minimum grain size: 0.005 *μm*
	- Maximum grain size: 0.25 *μm*
- Disk midplane:
	- Minimum grain size: 0.005 *μm*
	- Maximum grain size: 1 *mm*
- $\cdot \epsilon = 1$ (well-mixed dust)

Picogna et al., 2021

DIAD (D'Alessio Irradiated Accretion Disks)

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT

MÜNCHEN

DISK ASPECT RATIO

$$
r_g = \frac{GM_*}{c_s^2}
$$

photoevaporation opens a gap near the gravitational radius

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

TEMPERATURE PRESCRIPTION

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

DISK STRUCTURE

- modelled for several hundreds of orbits at 10 au, until a stable disk profile and wind streamlines were obtained
- grid domain extends out to 1000 au to prevent numerical reflections to affect the wind mass-loss rates
- grid inner boundary has been tested for several values (going down to 0.05 au)

Picogna et al., 2021

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN

M

STELLAR SPECTRA DEPENDENCE

Ercolano et al., 2021

$$
\log \dot{M}_{\rm w}(L_{\rm X, soft}) = a_{\rm S} \exp \left(\frac{(\ln (\log L_{\rm X, soft}) - b_{\rm S})^2}{c_{\rm S}} \right) + d_{\rm S},
$$

with as=−1.947 × 10¹⁷, bs=−1.572 × 10⁻⁴, cs=−0.2866, $d_s=-6.694$

LUDWIG-MAXIMILIANS-UNIVERSITÄT MÜNCHEN

STELLAR MASS DEPENDENCE

- we modelled stars with mass ranging from 0.1 to 1 Solar mass star
- we changed accordingly the stellar X-ray and bolometric luminosity, and spectral hardness
- the resulting wind mass-loss rate increase linearly with stellar mass

$$
\dot{M}_w = 3.93 \times 10^{-8} \left(\frac{M_{\star}}{M_{\odot}}\right) \left[M_{\odot} \text{ yr}^{-1}\right]
$$

 $\dot{M}_{\rm XEUV}(M_{\star}, L_{\rm X, soft}) = \dot{M}_{\rm XEUV}(M_{\star}) \frac{\dot{M}_{\rm XEUV}(L_{\rm X, soft})}{\dot{M}_{\rm XEUV}(L_{\rm X, soft, mean}}$

 $\log_{10} (L_X) = (1.54 \pm 0.12) \log_{10} (M_X) + (30.31 \pm 0.06)$ Güdel et al., 2007

Picogna et al., 2021

CAVEAT

• If the disks extend to ~20 au, then the calculated massloss rates are a factor 2 to 3 lower depending on L_X and stellar mass

Picogna et al., 2019

LUDWIG-MAXIMILIANS **JNIVERSITÄ**1

STELLAR MASS DEPENDENCE

- Integrating the gas stream flows in the wind we derive a Surface mass-loss rate as a function of cylindrical radii, which can be used to study the disc evolution over long time-scale
- changing only the stellar mass we see an increase in the peak radius of the surface density mass-loss rate profile due to the larger gravitational radius
- at the same time the maximum reach of the wind increases as a function of the stellar mass because of the change in the disc aspect ratio

Picogna et al., 2021

CAVITY SIZE DEPENDENCE

LUDWIG-MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN M

Picogna et al., in prep.

| LUDWIG-
| MAXIMILIANS-
| UNIVERSITÄT
| MÜNCHEN

.MI

CAVITY SIZE DEPENDENCE

Picogna et al., in prep.

LUDWIG-

MAXIMILIANS<mark>-</mark>
UNIVERSITÄT

HOW TO TEST PHOTOEVAPORATIVE MODELS?

Indirect Tests:

- Disk dispersal timescales
- Metallicity dependence of disk lifetimes
- Inside out dispersal from colour-colour diagrams

Direct Tests:

- High-resolution spectroscopy of blue-shifted gas emission lines
-

• Dust entrainment from scattered light observations of inclined transition disks

Picogna et al. 2021

(INNER) DISK LIFE-TIME

• we compared the derived inner disk life-time from a $\overline{5}$ Myr old star forming region as a function of stellar mass with the prediction from our model finding good agreement for a constant disc-to-star mass ratio

$$
\begin{array}{rcl}\n\text{life} & = & t_{\nu} \left(\frac{\dot{M}_{\text{acc},0}}{\dot{M}_{\text{w}}} \right)^{2/3} = \frac{M_{\text{disc},0}}{2\dot{M}_{\text{acc}}} \left(\frac{\dot{M}_{\text{acc}}}{\dot{M}_{\text{w}}} \right)^{2/3} \\
& = & \frac{1}{2} \left(\frac{M_{\text{disc},0}}{\dot{M}_{\text{acc},0}^{1/3} \dot{M}_{\text{w}}^{2/3}} \right),\n\end{array}
$$

Alcala et al. 2017

LUDWIG-

MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN

DISK EVOLUTION

Left: 1D Surface density evolution as a function of disk radius. Right: Surface density mass-loss rate for a 0.1 Solar mass disk orbiting a 1 Solar mass star with $L_{\rm X}$ $= 2.04\cdot 10^{30}$ erg/s. Ercolano & Picogna (2022)

LOW ACCRETORS

- Thanathibodee et al. (2022) looked for an accretion signature in disc-bearing stars previously thought to be non-accretors, using the He I λ 10830Å line
- In Thanathibodee et al. (2023) they analyse a sub-sample (24 sources) calculating the mass accretion rates
- they derived a minimum accretion rate of the order of 10−10 M⊙ / yr, which is roughly one order of magnitude above the detection limit for their sample
- They claimed that this was an evidence that EUV photoevaporation was dispersing these disks

Thanathibodee et al. 2023

| LUDWIG-
| MAXIMILIANS-
| UNIVERSITÄT
| MÜNCHEN

MU

LOW ACCRETORS

• EUV (Alexander & Armitage, 2007)

• X-ray (Picogna et al. 2021, Ercolano

LUDWIG-MAXIMILIANS-
UNIVERSITÄT M MÜNCHEN

IMF, Lx, and EUV initial distribution

LOW ACCRETORS

We assumed a chromospheric origin for EUV, adopting the same stellar mass scaling as the X-rays with a dispersion of 0.25

LOW ACCRETORS

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN **MU**

Ercolano et al. 2023

DISK WIND INTERACTION

MAGNETO-THERMAL WINDS 22

.UDWIG-**AXIMILIANS**

Hall-magnetohydrodynamic simulations of X-ray photoevaporative protoplanetary disc winds

Eleftheria Sarafidou,^{1,2*} Oliver Gressel,^{1,3} Giovanni Picogna,⁴ and Barbara Ercolano⁴

Leibniz-Institut für Astrophysik Potsdam (AIP), An der Sternwarte 16, 14482, Potsdam, Germany Institut für Physik und Astronomie, Universität Potsdam, Karl-Liebknecht-Str. 24/25, 14476 Golm, Germany Niels Bohr International Academy, The Niels Bohr Institute, Blegdamsvej 17, DK-2100, Copenhagen Ø, Denmark ⁴ Universitäts-Sternwarte, Ludwig-Maximilians-Universität München, Scheinerstr. 1, 81679 München, Germany

• in the aligned orientation, the HE causes prominent inward displacement of the poloidal field • outflows are mainly driven by photoevaporation – unless the magnetic field strength is considerable (i.e., $\beta_P \leq 10^3$) or the X-ray luminosity low enough (i.e., $log(L_X) \leq 29.3$)

- Aims:
	- Effect of Hall-effect on the field-topology and mass loss/accretion rates
	- Including internal X-ray photoevaporation in non-ideal MHD simulations
- Results:
	- lines that can increase the accretion rate through a laminar Maxwell stress
	-

LUDWIG-

MÜNCHEN

MAGNETO-THERMAL WINDS 43

Time averaged snapshots of the toroidal magnetic field with poloidal field lines

Time averaged snapshots of the density with the poloidal velocity streamlines

LUDWIG-MAXIMILIANS

UNIVERSITÄT MÜNCHEN

MI

MAGNETO-THERMAL WINDS 424

Figure 7. Trends of the total wind mass loss rate (\dot{M}_{w}) , mass accretion rate (\dot{M}_a) and viscous accretion rate (\dot{M}_v) . The error bars indicate the uncertainty of the measurements.

$$
\beta = 2\mu_0 p/B^2
$$

Figure 3. Total wind mass loss rate (\dot{M}_{w}) , accretion accretion rate (\dot{M}_{a}) and viscous accretion rates (i.e., \dot{M}_{v} , consisting of \dot{M}_{vR} and \dot{M}_{vM}) of the three fiducial cases – Hall free, anti-aligned and aligned HE. The error bars indicate the uncertainty in the time and volume averaging of the quantities.

Figure 10. Dependence of the wind mass loss rates (\dot{M}_{w}) for runs with several L_X values for a set of runs with MHD and one with only hydro.

P *lasma* parameter

What are the consequences for disk evolution?

LUDWIG-
MAXIMILIANS-
UNIVERSITÄT
MÜNCHEN

PLANET-WIND INTERACTION 25

Weber, Picogna, Ercolano, in prep.

PLANET-WIND INTERACTION 26

LUDWIG-MAXIMILIANS UNIVERSITÄT **MÜNCHEN**

- 1 Jupiter mass planet at 5.2 au
- Orbiting a 0.7 M_{\odot} star with 0.7 M_{\odot} star with $L_X = 2 \times 10^{30}$ erg/s
- Comparison of the gap with/out the PE wind

Weber, Picogna, Ercolano, in prep.

- The mass crossing the gap is greatly increased in both direction
- The planet accretes material from an extended region with respect to the wind-less case

Weber, Picogna, Ercolano, in prep.

LUDWIG-MAXIMILIANS UNIVERSITÄT

- The accretion rate onto the planet doubles when including the PE winds
- The total torque is reduced due to the increased surface density inside the planet location

PLANET-WIND INTERACTION 48

Is this problematic for planet pop. synthesis models?

PLANET-WIND INTERACTION 29

• The mass-loss rate due to the wind is reduced by a factor 2 due to the planet presence.

Weber, Picogna, Ercolano, in prep.

Are "cold" Jupiters the solution for long-lived disks?

LUDWIG-MAXIMILIANS J<mark>NIVERSITÄ</mark>1

Few Ideas for discussion

- Do we now agree on PE mass-loss rates?
- Do we still have to worry about relic disks?
- How disk dispersal proceed (in compact disks)?
- What about intermediate mass stars?
- We should start thinking about disk evolution in the magneto-thermal wind scenario (MHD disk winds loaded by thermal winds)
- Are cold Jupiters one possible solution to longlived disks?

