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ABSTRACT

The growth process of protoplanets can be sped up by accreting a large number of solid, pebble-sized objects that are still present in
the protoplanetary disc. It is still an open question on how efficient this process works in realistic turbulent discs.
We investigate the accretion of pebbles in turbulent discs that are driven by the purely hydrodynamical vertical shear instability (VSI).
For this purpose, we performed global 3D simulations of locally isothermal, VSI turbulent discs that have embedded protoplanetary
cores from 5 to 100 M⊕, which are placed at 5.2 au distance from the star. In addition, we followed the evolution of a swarm of
embedded pebbles of different sizes under the action of drag forces between gas and particles in this turbulent flow. Simultaneously,
we performed a set of comparison simulations for laminar viscous discs where the particles experience stochastic kicks. For both
cases, we measured the accretion rate onto the cores as a function of core mass and Stokes number (τs) of the particles and compared
these values to recent magneto-rotational instability (MRI) turbulence simulations.
Overall the dynamic is very similar for the particles in the VSI turbulent disc and the laminar case with stochastic kicks. For small
mass planets (i.e. 5 − 10 M⊕), well-coupled particles with τs = 1, which have a size of about one metre at this location, we find an
accretion efficiency (rate of particles accreted over drifting inwards) of about 1.6− 3%. For smaller and larger particles this efficiency
is higher. However, the fast inwards drift for τs = 1 particles makes them the most effective for rapid growth, leading to mass doubling
times of about 20, 000 yr. For masses between 10 and 30 M⊕ the core reaches the pebble isolation mass and the particles are trapped
at the pressure maximum just outside of the planet, shutting off further particle accretion.

Key words. accretion, accretion discs - turbulence - planet-disc-interaction

1. Introduction

A theory of planet formation should be able to explain the variety
of planetary systems discovered within a coherent framework. In
particular, the presence of gas giants poses a fundamental con-
straint.Within the core accretion scenario, the interstellar dust
grains need to grow from µm size to a 10− 20 M⊕ planetary core
before gas accretion sets in. This growth must happen before the
star can photoevaporate the gas disc, which occurs on a timescale
of ∼ 3 Myr (Hillenbrand 2008). Moreover, during the growth pe-
riod, planets are embedded in the ambient disc and their orbital
evolutions are determined by planet-disc and planet-planet in-
teractions. Some planets may end up accreted onto the star or
ejected from the system if no other physical mechanisms inter-
vene to stop them (see e.g. Alexander & Pascucci 2012; Ercolano
& Rosotti 2015). Planet formation and evolution are determined
by the structure of the protoplanetary discs in which they form.
The observations of these discs can give some information about
their masses, rotation, and density profile (Williams & Cieza
2011). The observed diversity in the sample of extrasolar planets
indicates that the evolution of a planet may depend on variations
in the initial conditions or random (external or internal) events
occurring during this crucial phase. An important initial condi-
tion is the stellar environment of the growing planetary system,
which can strongly affect the disc lifetime by tidally truncating

the outer regions of its birth disc and the dynamical evolution of
the planetary system (see e.g. Picogna & Marzari 2015).

We can place some constraints on the initial conditions and
the giant planet formation models by studying their current phys-
ical and chemical properties. The Galileo mission measured the
abundances of various elements in the outer layers of Jupiter.
Young (2003) found that they were in the range of 2 − 4 times
solar, with a predicted core mass in the range 0−18 M⊕, strongly
dependent on the assumed equation of state (Fortney & Nettel-
mann 2010). The internal composition has also been derived for
hot Jupiters such as HAT-P-13 b, where Buhler et al. (2016) used
the analysis of secondary eclipses of the planet to infer a core
mass of Mc < 25 M⊕ with a most likely value of 11 M⊕. These
observations can be explained by a bottom-up model of planet
formation, such as the core accretion model (Pollack et al. 1996),
which predicts an enriched solid composition respect to the so-
lar one. Within this framework, we are interested in studying the
process that can explain how the minimum solid core mass, nec-
essary to rapidly build up a massive gaseous envelope, can be
accreted within the disc lifetime.

The solid materials accreting onto the forming planetary core
can have different origins based on the local size distribution
(and Stokes number) of the solid disc. One solid reservoir con-
sists of the planetesimals that are gravitationally perturbed by
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the planetary embryo. If they can cross the mean motion reso-
nances with the planet and enter into its gravitational influence
zone, they can end up being accreted onto it. This model of solid
core accretion via planetesimals can explain a certain class of
gas giants within few au from the central star, but the timescales
needed to form the observed planets at tens or hundreds of au are
prohibitive.

One possibility to overcome this limitation is the rapid accre-
tion of pebble-sized particles (Ormel & Klahr 2010; Lambrechts
& Johansen 2012). In this context pebbles are centimetre-to-
meter-sized objects that strongly interact with the gas via drag
force. Planetary embryos with an increased gas density in their
proximity have an enhanced sphere of influence to accrete solid
particles, and they can interact with an higher flux of pebble-
sized particles owing to their fast drift speed. Adopting this ac-
cretion channel, the timescale of giant planet formation can be
lowered, making the build up of gas giants at tens of au possible,
if a significant reservoir of pebbles is present. In 2D hydrody-
namical simulations with embedded particles, this fast accretion
was confirmed (Morbidelli & Nesvorny 2012). The limiting fac-
tor for this accretion process is given by the need of a contin-
uous resupply of material from the outer disc because the drift
timescale of this pebble-sized particles is very short. The for-
mation of a strong pressure gradient created, for example, by
the growing planet can filtrate particles, thereby preventing these
particles from reaching the planet or inner parts of the disc; this
process sets in at the so-called pebble isolation mass of the core
and can explain a class of the observed transition discs. In this
paper, we address these limiting factors by studying the evolu-
tion of a variety of particle sizes in a global turbulent disc, de-
riving their accretion rates onto the planet, and obtaining new
estimates on the pebble isolation mass.

We consider the evolution of particles in discs made turbu-
lent by a purely hydrodynamical process, the vertical shear insta-
bility (VSI) as described in Nelson et al. (2013). Recently, Stoll
& Kley (2016) showed that the dust dynamics in VSI-turbulent
discs, following the gas behaviour, has a drift speed directed in-
wards at the disc midplane and outwards in its upper layers in a
similar way as for global MHD simulations (Flock et al. 2011).
This is exactly opposite to the meridional flow observed for lam-
inar viscous discs. This phenomenon can have important effects
on the planet formation process, resupplying materials to the
outer disc regions and explaining the observed chondrule popu-
lation in the outer regions of the solar system (Bockelée-Morvan
et al. 2002). Moreover, Stoll & Kley (2016) found that the strong
vertical motions induced by the VSI were able to collect pebble-
sized particles in rings of high surface density and low relative
velocity, potentially aiding the planet formation process through
streaming instability (Youdin & Goodman 2005; Auffinger &
Laibe 2018). In this work, we extend our recent analysis of the
planet-disc interaction in a laminar and turbulent disc (Stoll et al.
2017b) by adding dust particles to the simulations and study their
accretion dynamics on the planet. We perform two sets of mod-
els. In the first set, the dust is embedded in VSI turbulent discs
(with no explicit viscosity added) and in the second series cor-
responding viscous discs models are performed. This allows us
to disentangle the effect of turbulence on the planet-dust interac-
tion and the resulting accretion rate of solid particles. Recently,
Xu et al. (2017) studied the accretion of pebbles on small cores
in turbulent discs driven by the magneto-rotational instability
(MRI). We compare our results to their study.

In Sec. 2 we describe the various forces acting on dust par-
ticles embedded in the protoplanetary disc, and then focussing
in Sec. 3 on the models for planet-disc interaction and solid par-

ticle accretion. In Sec. 4 we describe the adopted set-up for the
numerical analysis and the main results obtained in Sec. 5. Fi-
nally, we discuss the obtained solid accretion rate onto a growing
planetary core in Sec. 6 and draw the main conclusions in Sec. 8.

2. Dust dynamics

We consider a thin vertically isothermal gaseous disc with an
embedded protoplanet of mass Mp orbiting around a Sun-like
star. Additionally, we follow simultaneously the motion of dust
particles of various sizes whose motions are determined by the
star, planet, and turbulent gas. In the VSI turbulent disc mod-
els, the particles experience the normal drag forces due gas-
particle interaction; see Sect. 2.2. On the other hand, in the vis-
cous disc models, the effect of the underlying turbulence is mod-
elled via additional stochastic kicks on the particles as described
in Sect. 2.3, in addition to the regular drag forces.

2.1. Equations of motion

A dust particle immersed in the disc is subject to (i) the gravita-
tional force of the central star and the protoplanet, (ii) the drag
force due to the varying velocity between the dust orbiting with
a Keplerian speed, and the gas, which rotates with a slightly sub-
Keplerian speed (Whipple 1964), due to the radial pressure gra-
dient that partially supports it against the stellar gravity, (iii) gas
turbulent motion, which influences the dust dynamics by radi-
ally and vertically spreading small particles; (iv) photophoretic
gas pressure and radiation pressure, which we do not take into
account since we focus mainly on a region close to the disc
midplane where the efficiency of these processes is expected to
be low, (v) growth/fragmentation (depending on their compo-
sition/relative speed) due to collisions between grains (see e.g.
Testi et al. 2014). We do not consider this because we study the
dynamics of particles of varying sizes remaining agnostic about
the dust size distribution.

We define a reference frame in spherical coordinates, cen-
tred at the location of the star with mass M? = 1 M� and co-
rotating with constant angular velocity Ωf , following a proto-
planet of mass Mp and fixed position rp. Then, we can describe
the equation of motion of a dust particle of mass md as

md r̈d = Fgrav + Fdrag + Fturb + Fnonin . (1)

In this equation, the first term is the gravitational interaction with
the star and planet,

Fgrav = −
GM?md

|rd|
3 rd +

GMpmd

|rp − rd|
3 (rp − rd) , (2)

the second term is the drag force (see Sec. 2.2), the third term is
the turbulence force (see Sec. 2.3), and the last is the non-inertial
term imparted to the star by the planet,

Fnonin = −
GMpmd

|rp|
3 rp . (3)

We ignore the self-gravity of the disc since we model a low mass
disc in which a large planetary core has already formed.

2.2. Drag force

The drag force acting on a particle depends strongly on the phys-
ical condition of the gas and the shape, size, and velocity of the
particle. We limit ourselves to spherical particles, for which the

Article number, page 2 of 18

http://adsabs.harvard.edu/abs/2010A&A...520A..43O,2012A&A...544A..32L
http://adsabs.harvard.edu/abs/2010A&A...520A..43O,2012A&A...544A..32L
http://adsabs.harvard.edu/abs/2012A&A...546A..18M
http://adsabs.harvard.edu/abs/2013MNRAS.435.2610N
http://adsabs.harvard.edu/abs/2016A&A...594A..57S
http://adsabs.harvard.edu/abs/2016A&A...594A..57S
http://adsabs.harvard.edu/abs/2011ApJ...735..122F
http://adsabs.harvard.edu/abs/2002A&A...384.1107B
http://adsabs.harvard.edu/abs/2002A&A...384.1107B
http://adsabs.harvard.edu/abs/2016A&A...594A..57S
http://adsabs.harvard.edu/abs/2005ApJ...620..459Y,2018MNRAS.473..796A
http://adsabs.harvard.edu/abs/2005ApJ...620..459Y,2018MNRAS.473..796A
http://adsabs.harvard.edu/abs/2017A&A...604A..28S
http://adsabs.harvard.edu/abs/2017A&A...604A..28S
http://adsabs.harvard.edu/abs/2017ApJ...847...52X
http://adsabs.harvard.edu/abs/1964PNAS...52..565W
http://adsabs.harvard.edu/abs/2014prpl.conf..339T
http://adsabs.harvard.edu/abs/2014prpl.conf..339T


Giovanni Picogna et al.: Particle accretion onto planets in discs with hydrodynamic turbulence

drag force always acts in the direction opposite to the relative
velocity. The drag regime experienced by a dust particle is de-
scribed by three non-dimensional parameters as follows:

1. The Knudsen number, K = λ/(2s), is the ratio of two char-
acteristic length scales of the system: the mean free path of
the gas molecules λ and the particle size, where s denotes the
particle radius.

2. The Mach number, M = vr/cs, is the ratio of the relative
velocity between dust and gas, ur, to the gas sound speed cs.

3. The Reynolds number is given by

Re =
2vrs
νm

, (4)

where νm is the gas molecular viscosity defined as

νm =
1
3

(m0v̄th

σ

)
, (5)

and m0 and v̄th =
√
π/8cs are the mass and mean thermal

velocity of the gas molecules, and σ is their collisional cross
section.

2.2.1. Drag law

We adopt a law that can model the drag force for a broad range of
Knudsen numbers, using the approach implemented by Woitke
& Helling (2003), who used a quadratic interpolation between
the Epstein and Stokes regimes

Fdrag =

(
3K

3K + 1

)2

Fdrag,E +

(
1

3K + 1

)2

Fdrag,S . (6)

For large Knudsen numbers, the first term dominates reducing
the drag to the Epstein regime (Baines et al. 1965; Kwok 1975),

Fdrag,E = −
4
3
π

(
1 +

9π
128

M2
)1/2

ρg(rp)s2v̄tur , (7)

where ρg(rp) is the gas density at the particle location. For small
Knudsen numbers, the second term dominates leading to the
Stokes regime

Fdrag,S = −
1
2

CDπs2ρg(rp)vrur , (8)

where the drag coefficient CD for low Mach numbers is (Whipple
1972; Weidenschilling 1977)

CD '


24 Re−1 Re < 1
24 Re−0.6 1 < Re < 800
0.44 Re > 800 .

(9)

For more information, see Picogna & Kley (2015, and references
therein).

2.2.2. Stopping time

A fundamental parameter to determine the strength of the drag
force is the stopping time, ts, defined as

Fdrag = −
md

ts
ur . (10)

It approximates the timescale on which the embedded gas parti-
cles approach the velocity of the gas. In the Epstein regime, the
stopping time takes the form

ts =
sρs

ρgv̄th
, (11)

where ρs is the internal particle density. It is also useful to derive
a dimensionless stopping time (or, hereafter, Stokes number) as

τs = tsΩK(r) , (12)

where ΩK is the Keplerian orbital frequency. The Stokes num-
ber τs (sometimes abbreviated by St) describes the effect of a
drag force acting on a particle independent of its location within
the disc. With our definition of the stopping time in eq. (11) the
Stokes number is defined in the midplane of the disc.

2.3. Turbulence

Turbulence in the gas acts to stir up well-coupled solid parti-
cles, preventing the settling process into a thin layer at the disc
midplane. In general, the source of this turbulence is unknown
(either driven by MHD or purely hydrodynamic processes as in
our case), but it is responsible for both angular momentum and
particle transport within the disc (Armitage 2010). By equating
the gravitational force in the vertical direction |Fgrav|z with the
drag force |Fdrag|z, we can derive a characteristic settling speed

vset = tsΩ2
Kz . (13)

The condition for which the turbulence strength can counteract
the vertical settling of small dust particles is then obtained by
comparing the settling time

tset =
z
vset

=
1

tsΩ2
K

, (14)

to the time tdiff the turbulence needs to erase the spatial gradients
in the particle concentration

tdiff =
z2

Dd
, (15)

where Dd is the turbulent diffusion coefficient of the particles
(dust). If one assumes that Dd equals, to a first approximation,
the diffusion coefficient for the gas Dg and that we can write
Dg ' αcsh, assuming that the turbulence acts like an effective
viscosity (Shakura & Sunyaev 1973), then one can derive the
minimum α value required to prevent dust settling at one scale
height, z = h

α >∼ τs . (16)

In the following we use a more complex turbulent diffusion
model that distinguishes between Dd and Dg.

2.3.1. Turbulent diffusion model

The source of turbulence in planet-forming discs is unknown. It
can depend strongly on the environment, and different sources
might be dominant in the various regions and during the evolu-
tion of the disc. In the laminar disc simulation, we do not con-
sider the origin of the turbulence and use a simplified turbulence
diffusion model to evolve the dust population. The basic idea
is to mimic turbulent transport as a diffusive process (through
a Brownian motion) (Dubrulle et al. 1995; Charnoz et al. 2011;
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Youdin & Lithwick 2007) with a stochastic term in the equation
of dust motion to account for the kicks induced by the turbulent
gas velocity field. We model the kick on the particle position as
a random Gaussian variable δrd,T with mean 〈δrd,T〉 and variance
σ2

d,r depending on the dust diffusion coefficient Dd as follows:

δrd,T =

 〈δrd,T〉 =
Dd
ρg

∂ρg

∂x dt

σ2
d,r = 2Dddt ,

(17)

where dt is the time step and ∂/∂x is the spatial derivative along
the considered direction. The relation between particle and gas
diffusion can be written as

Dd =
Dg

Sc
, (18)

where Sc is the Schmidt number (Youdin & Lithwick 2007)

Sc =
1 + Ω2

Kτ
2
s

1 + 4ΩKτs
. (19)

This prescription for the turbulent diffusion assumes that the dif-
fusion coefficients in the vertical and radial direction are identi-
cal. This is a crude assumption as we have shown in Stoll et al.
(2017a) because the α parameter can differ in the radial and ver-
tical direction by more than two orders of magnitude; see also
the discussion in Youdin & Lithwick (2007). Nevertheless, we
use this simplified description to model the vertical and radial
spread of dust particles in the viscous disc simulations and find
results comparable to those created self-consistently by VSI tur-
bulence as we show later.

3. Planet-solid disc interaction

3.1. Particle accretion

The idea that gas plays a pivotal role in the accretion of solids by
planetary cores was first introduced in the Kyoto model (Hayashi
et al. 1977; Nakazawa & Nakagawa 1981; Nakagawa et al.
1983). The basic concept was that the orbital decay experienced
by planetesimals is size dependent, occurring at a lower rate for
larger bodies. In this way, a large embryo can grow as drag feeds
it with dust and small planetesimals. Later, Weidenschilling &
Davis (1985) found that orbital resonances with the growing core
can effectively filter a significant fraction of planetesimals for
which the drag force is not strong enough to allow them to cross
those stable regions. However, since eccentricities are pumped
up at resonances, collisions between large planetesimals become
more frequent, increasing the fraction of smaller bodies that can
cross the resonances and accrete onto the planetary core.

On the other hand, Kary et al. (1993) showed that even if a
body is small enough to cross all the resonances, it can avoid
being accreted. The impact probability typically ranges between
10− 40% but can be higher if the core possesses an extended at-
mosphere (D’Angelo et al. 2014). More generally, the accretion
rate is inversely proportional to the strength of the drag force and
the inclination of the planetesimal. Moreover, Kary et al. (1993)
found that for cores with mass ratio q = Mp/M? > 10−5, the ma-
terial approaching the planet can be captured into a stable orbit
around the planet, thereby forming an accretion disc around it.

This strong perturbation in the local environment of the
protoplanet creates pressure gradients that impact the evolu-
tion of dust and planetesimals (Paardekooper & Mellema 2004;
Paardekooper 2007). In particular, small protoplanets, depend-
ing on their surface and temperature profiles, can carve a gap in
the dust disc even if there is no gas gap (Picogna & Kley 2015;
Rosotti et al. 2016; Dipierro et al. 2016).

3.2. Resonances

A particle that migrates within the disc feels a stronger (regu-
lar) gravitational interaction with a planetary companion when
it reaches specific locations in the disc where its mean motion
nd = 2π/T , where T is its orbital period, is a multiple of the
planet mean motion nP

nd

nP
=

(l + m)
l

, (20)

where l and m are integer numbers. These are called mean mo-
tion orbital resonances (MMR), where m gives the order of the
resonance. These MMRs can effectively excite the eccentricity
and inclination of particles, potentially halting their drift process.
Their strength grows for decreasing values of m and increasing
l. Thus, focussing on first order MMR (m = 1), the larger l, the
smaller the particles that can be stopped from accreting onto the
planet. The resonances are yet not able to halt all the particles be-
cause they become more and more closely spaced as l grows un-
til the point at which they overlap leading to a chaotic behaviour
of the dust particles that can cross the higher order resonances
(Wisdom 1980). The minimum size smin of a particle for which
the resonant perturbations due to a planet with mass ratio q are
stronger than the drag force is (Weidenschilling & Davis 1985)

smin =
ρghad

3ρdqC(l)l3/2
, (21)

where C(l) is an increasing function of l, ad is the particle semi-
major axis, and the region of chaotic behaviour close to the
planet location starts at (Duncan et al. 1989)

|r − ad| ' 1.5q2/7 . (22)

This relation depends strongly on the local gas properties. When
the planet opens up a gap in the gaseous disc, reducing the gas
surface density, the particle Stokes number increases; thus the
inner resonances can halt a larger fraction of incoming particles,
which are less coupled to the gas.

For a planet with q = 10−4 Paardekooper & Mellema (2004)
found three visible regimes. Particles with Stokes number less
than τs ' 0.1 are well coupled to the gas, and they always reach
the planet surface. On the other hand, particles with τs > 10 are
trapped in external resonances, and their accretion rate is very
low. Finally, the intermediate regime is reaching the co-orbital
region of the planet, but not all of them are accreting as predicted
by Kary et al. (1993).

4. Set-up

We used the pluto code (Mignone et al. 2007) and modified it to
take into account the evolution of partially coupled particles. The
main parameters of the reference simulations are summarised in
Tab. 1. The simulations analysed in this work are the same as in
Stoll et al. (2017b), where we analysed the dynamics of a planet
embedded in a VSI turbulent disc without particles, so we briefly
describe the set-up, focussing only on the dust part. For a more
detailed description of the initial conditions of the gaseous disc,
see Stoll et al. (2017b).

4.1. Gas component

The initial disc profile is axisymmetric and extends from 2.08 au
to 13 au (0.4 to 2.5 in code units, where the unit of length is
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5.2 au). The gas moves with azimuthal velocity given by the
Keplerian speed around a 1 M� star, corrected for the pressure
term and rotational velocity of the coordinate system that rotates
here with the orbital speed of the planet. The total disc mass is
0.01 M� and the density distribution, created by force equilib-
rium, is given in cylindrical coordinates (R,Z, φ) by

ρg(R,Z) = ρg,0

(
R
Rp

)p

exp
[
GMs

c2
s

(
1
r
−

1
R

)]
, (23)

where ρg,0 is the gas midplane density at R = 1 and p = −1.5
is the density exponent. In our case ρg,0 = 2.07 · 10−11 g/cm3

such that the vertically integrated surface density at R = 1 is
Σg = 200 g/cm2. The disc is modelled with a locally isother-
mal equation of state, and we assume a constant aspect ratio
H/R = 0.05, which corresponds to a radial temperature profile
with an exponent q = −1 and T (Rp) = 121 K. For the inner
and outer radial boundary, we apply reflective conditions, while
outflow conditions are implemented for the vertical boundaries
and periodic conditions in the azimuthal direction. We perform
two sets of simulations. One set has an inviscid disc in which
the source of turbulence is given entirely by the VSI and the
other uses a viscous disc in which the viscosity is given by
ν = 2/3αcsH, where we use a constant α viscosity as derived
from the VSI simulation, which is α = 5 · 10−4 (Stoll et al.
2017b).

4.2. Dust component

The solid fraction of the disc is modelled with 106 Lagrangian
particles divided into ten size bins as reported in Table 1.This
approach has the great advantage of modelling a broad range
of Stokes numbers (see eq. 12) self-consistently using the same
model particles. The trade-off is that in the regions of low den-
sity, the resolution of the dust population is lower. However, for
our study this is not a problem since we are mainly interested
in the dynamical evolution of dust particles; thus we do not take
into account collisions between particles or the backreaction of
the dust onto the gas. We study particles with sizes from 0.1 mm
up to 1 km and internal density ρd = 1 gcm−3. The particle sizes
and corresponding Stokes numbers are quoted in Table 1, where
the Stokes numbers are evaluated at the planet location. The par-
ticle sizes are chosen to cover a wide range of different dynami-
cal behaviour. The initial surface density profile of the dust par-
ticles is

Σd(r) ∝ R−1 . (24)

This choice was made to have a larger reservoir of particles in
the outer disc. This particle distribution leads to equal number
particles in each radial ring as the grid is spaced logarithmically
in the radial direction. The dust particles are placed initially at
the disc midplane in the disc model with active VSI driven tur-
bulence because the particle stirring is obtained via the turbulent
mechanism. For the laminar disc, we start with a vertical dis-
tribution given by the local disc scale height and the dust dif-
fusion coefficient. By comparing eq. (14) and eq. (15) we find
that, for our initial profiles, particles larger than 1 mm are go-
ing to settle to the disc midplane. The particles are introduced at
the beginning of the simulation, and they are evolved with two
different integrators depending on their Stokes numbers. Follow-
ing the approach by Zhu et al. (2014), we adopt a semi-implicit
leapfrog-like (drift-kick-drift) integrator in spherical coordinates
for larger particles and a fully implicit integrator for particles
well coupled to the gas. We include in Appendix B the detailed

Table 1. Model parameter

Parameter model
Radial range [5.2 au] 0.4 - 2.5
Vertical range [H, θ] ±5, 76◦ − 104◦
Phi range [rad] 0 - 2 π
Radial grid size 600
Theta grid size 128
Phi grid size 1024
Planet masses [M⊕] 5, 10, 30, 100
Particle sizes [cm] 0.01, 0.1, 1, 10, 30,
(105 in each bin) 100, 300, 103, 104, 105

Corresponding 7.79 · 10−5, 7.79 · 10−4, 0.0078
Stokes number 0.082, 0.27, 1.23, 6.91, 67.2
for the 10 bins 377, 7670

implementation of the two integrators. We do not consider the
effect of the disc self-gravity on the particle evolution. Particles
that leave the computational domain at the inner boundary are
re-entered at the outer boundary. Accreted particles are flagged
but are otherwise kept in the simulations.

4.3. Planets

We embed a planet, with a mass in the range [5, 10, 30, 100 ]M⊕,
orbiting a solar mass star on a circular orbit with semi-major
axes ap = 1 in code units (5.2 au). The planet does not migrate
and its mass is kept fixed. To prevent a singularity close to the
planet location, its gravitational potential is smoothed with a cu-
bic expansion inside a sphere centred on the planet location with
a radius given by the smoothing length drsm = 0.5RH (Klahr &
Kley (2006), Stoll et al. (2017b)), where RH denotes the radius
of the Hill sphere

RH = Rp

(
1
3

q
)1/3

. (25)

After the dust component has been evolved for 20 orbits in the
computational domain, the planetary mass is slowly increased
over additional 20 orbits to allow for a smooth initial phase. Each
simulation was run over 200 orbital periods of the planet when
the disc structure had reached a quasi-stationary state.

5. Global dust motion

In this section, we analyse the overall behaviour of the dust par-
ticles in the presence of the planet in combination with the disc
turbulence. Of particular interest are the changes in the spatial
distribution of the particles as induced by the planet. However,
before we focus on the action of the planet we comment briefly
on the dust dynamics in the disc.

5.1. Vertical dust distribution

The action of the turbulence in the disc works against the ten-
dency of the dust particles to settle towards the midplane of the
disc and leads to a vertical spreading of the particles. Concern-
ing this particle stirring in turbulent discs we present in Fig. 1
the vertical scale height of the particles (in units of the gas scale
height H) as a function of their Stokes number, τs for various
models. The two cases studied in this work are shown by the
blue and green crosses for the VSI turbulent case and the lami-
nar disc with stochastic particle kicks, respectively. We analysed
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Fig. 1. Measured particle scale height, Hp, in units of the gas scale
height, H, as a function of the particle Stokes number for the simu-
lations of the turbulent VSI, and the laminar disc plus stochasistic kicks
at R = 1.8rp, averaged between 150 and 200 orbital periods. Shown are
the results of the runs used in this paper (labelled with blue and green
crosses), and of Stoll & Kley (2016) and Fromang & Nelson (2009) in-
dicated with light blue and black circles, respectively. Additionally, we
overplot the fit of the VSI particle scale heights by Youdin & Lithwick
(2007) (see equation 26).

the particle distribution for the 5M⊕ case at a radius of 1.8rp
averaged between 150 and 200 orbital periods. From our previ-
ous work in Stoll & Kley (2016) we know that the timescale for
spreading the particles vertically in the presence of fully devel-
oped VSI turbulence is about 100 orbital periods, so near the end
of our simulations (150−200 orbits) the particle distribution has
reached a quasi-stationary state. Furthermore, we checked the
particle vertical distribution from 100 and 150 orbital periods at
the same distance and found the same profile, confirming that an
equilibrium was reached. Additionally, we show the results of
Stoll & Kley (2016) for locally isothermal discs using the data
taken from their Table 1 (labelled SK16) and Fromang & Nelson
(2009) who studied particle settling in global ideal MHD disc
displaying MRI turbulence (labelled FN09).

Overplotted to the data is an approximation by Youdin &
Lithwick (2007, their equation (28)), which can be written as
(neglecting a correction factor of order unity)

Hp

H
=

√
αz

αz + τs
, (26)

where αz measures the vertical diffusion of the gas; see Youdin
& Lithwick (2007). In Fig. 1 we use αz = 1.737 · 10−3 for the fit.
Equation (26) accounts for the fact that for small τs the particles
are well coupled to the gas and the two scale heights agree, Hp =
H, while larger particle settle more to the midplane of the disc
and have a smaller thickness. For large τs the slope becomes
∝ τ−0.5

s as can be inferred from eq. (26).
For the small particle sizes our distribution is similar to that

of Fromang & Nelson (2009). For their investigated particle sizes
with τs = (10−4, 10−3, 10−2), they find a scaling Hp/H ∝ τ−0.2

s in
rough agreement with our findings. For the larger particles the
slope becomes steeper than the expected ∝ τ−0.5

s scaling because
we have reached the resolution limit in our simulations such that
the particle scale height cannot be resolved anymore.

In our previous simulations of particles embedded in VSI
turbulent discs (Stoll & Kley 2016) we find for the mean vertical
velocity at 5 au < v2

z >= 5 · 10−6v2
K,1au (normalising to the Kep-

lerian velocity at 1 au). Using this value and H/r = 0.05 we find

for the mean vertical Mach number Mz ≈ 0.1. In (Stoll & Kley
2016) we quote for the (dimensionless) eddy turnover timescale
τe ≈ 0.2. From these we can calculate a vertical diffusion coeffi-
cient of (Youdin & Lithwick 2007)

αz = τe M2
z . (27)

Hence, from Stoll & Kley (2016) we find τe ≈ 0.2, which is
consistent with the value obtained by the fit for Fig. 1.

5.2. Dust filtration

In Fig. 2 we plot the radial distribution of three representative
size particles as a function of time. Shown are the results for
both the viscous α- and turbulent VSI-disc models for all planet
masses from 5 M⊕ (top) to 100 M⊕ (bottom). The particle sizes
increase from left to right from 10.0 cm to 10 m, which corre-
sponds to the Stokes numbers 8 · 10−2, 1.23 and 67, respectively.
Clearly visible are the different radial drift velocities of the par-
ticles that are a function of the Stokes number, τs. Indeed, the
speeds found in our simulations are in good agreement with the
theoretical expectation of Nakagawa et al. (1986), which is given
by

vdrift =
∂ ln p
∂ ln R

(H
R

)2 uK

τs + τ−1
s
≡ −2 η

vK

τs + τ−1
s
. (28)

Equation (28) indicates that the maximum speed, reached for
τs = 1, is given by vdrift = −ηvK, where η is typically of order
(H/R)2 and vK is the Keplerian azimuthal velocity. The results
on the drift speed for the VSI turbulent and viscous disc are very
similar for all cases studied.

For the low mass 5 M⊕ planet and small particles one notices
small disturbances near the planet (first two rows on the left),
but the planets are not able to stop the particles from crossing
their location. The same behaviour is also found in the 10 M⊕
case displayed in the second two rows of Fig. 2. Focussing on
the middle column, we can see the evolution of 1 m particles,
which have a Stokes number of order unity (τs = 1.23). Their
drift speed is so high that they can cross the whole computa-
tional domain in ∼ 150 orbits, in agreement with Eq. (28); see
also Stoll et al. (2017b). A change in the drift speed is also visi-
ble as the particles cross the planet co-orbital region because the
Stokes number suddenly increases because of the drop in the gas
density. The only exception is given by the planetesimal-sized
objects (10 m, τs = 67, right column), which do not feel a strong
gas drag, such that the planetary core can effectively perturb their
orbits depleting its co-orbital region. This regime is described in
Dipierro & Laibe (2017), who found that for a Stokes number
number greater than a critical value

τs,crit ' 2.76
(
−ζ

1 + ε

)
' 6.83 , (29)

where ε = 0.01 is the dust-to-gas ratio, and ζ = ∂ln p/∂ln R =
−2.5, the minimum mass to open a gap in the solid disc is

Mcrit ' 1.38
(
−ζ

1 + ε

)3/2

τ−3/2
s

(H
R

)3

M� . (30)

For our parameter space, we find that this transition happens be-
tween the particles with s = 300 cm (τs = 6.91) and a critical
mass of 12 M⊕ and the particles with s = 1000 cm (τs = 67.2)
and a critical mass of 0.4 M⊕. We see that only the second sam-
ple of particles is depleted from the co-orbital region of the small
mass planets, confirming their analytical prescription.
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Fig. 2. Spatial distribution of the dust particles as a function of time for the different planetary masses and for three representative particle sizes.
The Stokes numbers from left to right are 0.08, 1.23, and 67.2.
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Fig. 3. Histogram of the dust surface number density distribution as a function of radius after 200 planetary orbits for three representative dust
sizes in the turbulent (blue) and laminar (green) case. The Stokes numbers from left to right are 0.08, 1.23, and 67.2.

Fig. 4. Azimuthal gas speed in units of the Keplerian speed as a function of radius for the different planetary masses and models (VSI = red,
alpha-disc = green). When the gas speed becomes super-Keplerian outside the planet location, the dust-filtration process occurs and the pebble
isolation mass is reached.
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Fig. 5. Surface density distribution of the dust particles after 80 planetary orbits for the different planetary masses and for three representative
particle sizes. The Stokes numbers from left to right are 7.79 · 10−5, 1.23, and 67.2.
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The third two rows of Fig. 2 show the particle evolution for a
30 M⊕ planet. This planetary mass can change the final particle
distribution dramatically. A gap is already visible for the 10 cm
particles, while for the particles with Stokes number of order
unity (central column) the planet acts as a barrier and can fil-
trate the dust in the outer disc. This effect is due to the formation
of a pressure maximum beyond the planet where small particles
are trapped (Paardekooper & Mellema 2006). After ∼ 100 orbits
the particles are located either in the pressure bump close to the
planet position or in the outer disc. This dust filtration leads to
a strong reduction of particles inside the planetary orbit, and
hence the number of particles leaving through the inner radius is
strongly diminished. As those particles are re-entered at the outer
boundary, eventually this results in a shut-off of the flow of par-
ticles in the outer disc. We decided not to have a constant inflow
of particles because they would only end at the pressure bump as
all the others. The particle concentration could become a sweet
spot to have a second generation of planets due to streaming in-
stability, but it is beyond the purpose of this paper to study this
high dust density regions in more detail.

For the planetesimal-sized objects, the 30 M⊕ planet can
open a deeper and wider gap compared to the small mass cases.
Only planets greater than 10 M⊕ are able to filter the pebble-
sized particles efficiently. This result confirms the value obtained
by Lambrechts et al. (2014) in which they defined the pebble
isolation mass around 20 M⊕ for similar initial disc condition.
As we have seen, a planet that modifies the pressure profile in
the disc can effectively stop the inward drift of certain size of
dust particles. In a related scenario, such a dust filtration is be-
lieved to explain the observation of a class of transition discs
(Type 2), where the dust is highly depleted in the inner region of
the protoplanetary disc while the gas accretion rate onto the star
remains high (for a recent review on the subject see Ercolano
& Pascucci 2017). The last two rows show the particle evolution
for the 100 M⊕ planet where the dynamical behaviour of the dust
particles is very similar to the 30 M⊕ case but the gap opens ear-
lier, and so the simulations reach a stationary state on a shorter
timescale.

5.3. Gap opening

A planet can open a gap in the dust disc even if no clear gap ap-
pears in the gas distribution (see e.g. Picogna & Kley 2015). We
analysed the radial distribution of the dust population by split-
ting the computational domain into 400 logarithmically spaced
bins and following its evolution with time. In Fig. 3 we plott the
distribution at the end of the simulation (200 planetary orbits)
for the same three representative size particles as in the previous
plot. In the left column, the 10 cm dust particles (corresponding
to a Stokes number of τs = 0.08) do not show a strong pertur-
bation by the presence of the small mass planets (in the first two
rows, corresponding to 5 and 10 M⊕). A clear gap appears start-
ing with the 30 M⊕ planet (third row), where the influence of the
VSI (represented by a blue line) favours the formation of deeper
gaps.

The intermediate case of meter-sized particles, which corre-
sponds to a Stokes number of τs = 1.2, represents the fastest
evolving particles in the simulation; see eq. (28). As shown in
the central column, the distribution is strongly affected by the
vertical motion of the VSI where a bunching behaviour can be
noticed (Stoll & Kley 2016). This feature cannot be reproduced
by the viscous α-disc model. In the 30 M⊕ planet case (third col-
umn) we see that the VSI also leads to a faster dust filtration pro-
cess, which is already completed for the 100 M⊕ case in which

the inner disc is practically devoid of particles. For the massive
planets one notices that a large number of small and large parti-
cles remain at the co-rotation location. These are particles collect
near the two Lagrange points L4 and L5.

For a planetesimal-sized object of 10 m in the third row (cor-
responding to a Stokes number of τs = 67) the gas influence
is negligible. A gap is visible in the distribution already for the
small mass planets due to their gravitational interaction with the
particles. In this case, the VSI does not affect the evolution of
planetesimals and yields results identical to the viscous case.

The effect of filtering and gap formation can be understood in
terms of the angular velocity distribution in the disc around the
planet. The onset of gap formation leads to a super-Keplerian
flow just outside of the planet, which coincides with a maximum
in the radial pressure distribution. The angular velocity is shown
in Fig. 4, where the ratio of vφ/vkep is shown for the four differ-
ent planetary masses. Outside of the planet the ratio is slightly
smaller than one owing to the pressure support of the gas. For
the planet masses displayed the super-Keplerian motion begins
to show for the 30 M⊕ case. Hence, as expected the filtering pro-
cess is directly related directly to the maximum in the angular
velocity. The property that particles (with unit Stokes number)
cannot be accreted above a critical planet mass is referred to as
the pebble isolation mass. In appendix A we present additional
simulations to confirm that our simulations have been run long
enough to draw this conclusion about the super-Keplerian mo-
tion.

5.4. Planet-solid disc interaction

The planet is not only able to open a gap in the dust and gas
disc, but it can also generate non-axisymmetric features in their
distribution that might be observable with modern observational
facilities. In Fig. 5 we show the surface density distribution of the
dust population after 80 planetary orbits. The spiral arms that are
typically generated by embedded planets are only (barely) visi-
ble for the most massive planet (bottom row) and the smallest
particles (left column) that are well coupled to the gas dynam-
ics. For the 100 M⊕ planet strong vortices are created in the gas
disc for the VSI case and less so for the laminar case (Stoll et al.
2017b). Because they are pressure maxima, particles tend to ac-
cumulate in these vortices, which is reflected in the correspond-
ing particle distributions as seen in the bottom left part of the
plot.

Also visible in the middle column is the strong effect that the
VSI has on pebble-sized particles creating regions where parti-
cles are collected as shown in Stoll & Kley (2016). For the large
planets we see, as shown in more detail before, in the bottom
part of the middle column, that a sort of transition disc is formed
since the planet has reached the pebble isolation mass, stopping
the influx of meter-sized particles (as seen also in Ayliffe et al.
2012). On the other hand, for the planetesimal-sized objects,
shown in the right panel, we observe ripples close to the planet
location due to the excitation of the eccentricity in the dust parti-
cles by the planet that the gas is not able to effectively damp on a
short timescale. Furthermore, the planetesimals are collecting in
the Lagrangian points (L4 and L5) in front and behind the planet
location, and their density is enhanced at the outer 2:1 mean mo-
tion resonance with the planet, visible in the upper part of the
last column for the 100 M⊕ planet.

The eccentricity distribution indicated in Fig. 6 shows only
small differences between the α- and VSI-disc models, while
they are much more pronounced for the inclination distribution
shown in Fig. 7. The excitations at the resonance locations are
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Fig. 6. Eccentricity distribution for 3 representative size particles in the VSI (blue) and alpha-disc (green) model at the end of the simulation. The
first six inner and outer first-order MMRs are overlaid.

Fig. 7. Inclination distribution for 3 representative size particles in the VSI (blue) and alpha-disc (green) model at the end of the simulation. The
first six inner and outer first-order MMRs are overlaid.
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Table 2. Comparison of the mean eccentricity and inclinations of the solids in the disc for the different planet masses at the end of the simulation.

Planet masses Eccentricity Inclination
VSI [10−3] Laminar [10−3] VSI [10−1 deg] Laminar [10−1 deg]

5M⊕ 4.673 4.480 7.439 6.920
10M⊕ 5.054 4.786 7.310 6.936
30M⊕ 5.062 5.250 6.071 6.702
100M⊕ 8.843 9.406 4.854 7.089

visible for the biggest size objects in the lower panel. From
eq. (22) we find that the region where the chaotic behaviour pre-
vents the resonances from stopping planetesimal objects starts
at a radial distance of 0.1478 from the planet location for the
100 M⊕ planet and 0.1048 for 30 M⊕. These values roughly cor-
respond to the 5:4 and 7:6 MMRs with the planet. From Fig. 6,
where the location of the major MMRs are plotted, we can con-
firm this finding. Planetesimal objects cannot reach the region
inside the 5:4 resonance with the 100 M⊕ planet, while for the
30 M⊕ planet the bodies are able to reach the 7:6 resonance
where the chance of being accreted by the planetary core is much
higher.

In Tab. 2 we also report the mean values of all the solids in
the disc at the end of the simulation. The eccentricity and in-
clinations are on average higher for the VSI discs with respect
to the laminar discs in the small mass planets. This effect can
be explained by the highly anisotropic turbulence nature of the
VSI, which is able to stir up dust particles exciting their orbital
elements more efficiently. This trend however is inverted for the
high mass planets, possibly because the VSI strength is partly
reduced by the presence of massive planets, and the production
of vortices in which the particles tend to be collected.

The viscous α-disc model cannot correctly reproduce the dis-
tributions observed in the VSI disc because we assumed a con-
stant α-value throughout the whole computational domain, and
did not distinguish between radial and vertical angular momen-
tum transport. However, as shown recently the VSI turbulence
behaves strongly anisotropic with a large difference between ra-
dial and vertical transport (Stoll et al. 2017a). Since the turbulent
kicks in the particle motion are generated based on the constant
alpha value, they over- or under-predict the turbulence efficiency
in the laminar disc resulting in a different particle scale height,
and thus inclination. Nevertheless, this does not seem to play a
crucial role in the solid accretion rate to the planet from small
turbulent velocities.

Fig. 8. Number of accreted particles per orbit over time for the four
different planet masses. Shown is the total number summed over all
size bins.

6. Solid accretion rate

In order to detect the particles that accrete onto the planet, we
adopted two different approaches, depending on the ratio of their
Stokes number and the time they spend inside the Hill sphere
which, for pebble-sized particles with τs is tenc = RH/∆v, where
∆v is the relative velocity between the particle and the planet.
For particles with stopping time shorter than tenc, their trajectory
close to the planet location is determined primarily by the drag
force. Whether the particle is then accreted depends on the rel-
ative strength of the gravitational attraction and the drag force.
If the drag force dominates, it can sweep out a particle even if
it is gravitationally bound. Thus we checked if the timescale for
gravitational attraction tg = ∆v/g is shorter than four times the
timescale for the stopping time. The factor of four stems from
the results of Ormel & Klahr (2010), who had found in their nu-
merical simulations that only a small deflection of a fourth of the
velocity is needed to accrete the particle.

Larger particles lose only a small amount of momentum
through drag when they cross the Hill sphere. Thus we checked
for whether particles inside the Hill sphere are bound by the
gravity of the planet, which is the case if the particle has not
enough kinetic energy to leave the Hill sphere, that is

ekin + egrav < egrav(RH) . (31)

Both approaches also agree in the transition region where the
stopping time is similar to tenc. We checked for these conditions
every tenth of a planetary orbit and we flagged as accreted the
particles that fulfil the previous criteria without removing these
particles from the computational domain.

In Fig. 8 we show the number of accreted particles per orbit
for the different planet masses as a function of time. In the ini-
tial phase of the simulations, the number of accreted particles in-
creases while the mass of the inserted planets grows to their final
value (within 20 orbits). After that, the number of accreted par-
ticles drops continuously and settles roughly to a constant value
for the lower mass planets, as there is at least for the faster drift-
ing particles a continuous supply from the outer disc (see Fig. 2
middle column). For the larger mass planets, the accretion rates
are further reduced as they have reached their isolation mass for
the particles with Stokes number around unity. Additionally, for
the large planets, the small and large particles drift very slowly
and, after the particles within the horseshoe region have been
accreted, the new inflow from the outer disc is very slow.

In Fig. 9 we show the number of accreted particles of vari-
ous sizes for different planet masses summed over 50 planetary
orbits, from t = 100 − 150. Several interesting features can be
noted. The number of accreted particles peaks for particles in the
range between 30 and 300 cm (corresponding to pebble-sized
objects with Stokes number of order unity) for the small plan-
etary masses, while these particles are effectively accreted and
filtered for the two higher mass planets. The total number of ac-
creted particles adds up to about 5000 for each of the lower mass
planets in agreement with the results shown in Fig. 8. Moreover,
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although the effect of VSI seems marginal it shows in nearly all
cases a slightly higher solid accretion rate than for the viscous
α-disc model. As the difference is rather small we may conclude
that our modelling of the stochastic motion of particles in discs
also gives reasonable results for the accretion rates of the parti-
cles onto embedded planets. To obtain an actual mass accretion

Fig. 9. Accreted particles as a function of the particle stopping time,
where their approximate size is also reported in the top x-axis, inte-
grated over 50 planetary orbits (from t = 100 − 150). The VSI (solid
line) and alpha disc model (dashed line) are compared.

rate onto the planet, we need then to convolve this result with
a dust size distribution. Birnstiel et al. (2012) showed that the
size distribution is very steep for Stokes numbers less than 0.1.
At that point, there is a gap due to the so-called meter-sized bar-
rier. This effect removes the peak point of our accreted particles
for the small mass planets and renders the accretion growth for
smaller dust particles even steeper. For the bigger size objects,
there are far fewer constraints from models. The leading theory
of streaming instability predicts that the peak of formed plan-
etesimals is 10 − 100 kilometer-sized objects with a tail in the
distribution also to kilometer-sized objects, which represent our
bigger size objects in the simulation (Simon et al. 2016, 2017).

Fig. 10. To measure the accretion (and survival) efficiency, the evolution
of particles initially within a ring outside the planet co-orbital region
(defined as in eq. 34) is monitored.

6.1. Efficiency of pebble accretion

Very important for the mass growth of a planetary core is the effi-
ciency, Peff , of the accretion process, i.e. the number of accreted
particles onto the planet divided by the number of particles that
would otherwise drift across the location of the planet in an un-
perturbed disc. Following Ormel & Klahr (2010), we define this
efficiency as

Peff =
Ṁacc

Ṁdrift
, (32)

where Ṁacc is the actual accretion rate of solids onto the proto-
planet and Ṁdrift the particle drift rate through the disc, given by

Table 3. Comparison of the efficiency of pebble accretion with Stokes
number one, for three cases.

Model Planet Masses
5M⊕ 10M⊕

Hill (eq. 38) 0.43 0.50
Col (from eq. 35) 0.67 0.80
turb (simulations) 1.6 · 10−2 3 · 10−2

Ṁdrift = 2πrΣpvdrift , (33)

where Σp is the particle surface density and vdrift is given by
eq. (28). The quantity Peff in eq. (32) is, in fact, the probabil-
ity that a particle that drifts through the disc is accreted by the
protoplanet.

When analysing the data in this way we encountered the
problem that for the particles with very small and very large
Stokes numbers the drift velocities vdrift are very small (in agree-
ment with eq. 28) such that the calculated efficiencies became
very high because of the relatively large amount of particles ac-
creted. The reason for this lies in the fact that the accreted small
and large particles originate primarily from the horseshoe region
and did not migrate to the planet, which is only a transient effect
visible in the initial phase of the simulations. Hence, we decided
to use an alternative way of measuring the efficiency of parti-
cle accretion from our simulation, which is illustrated in Fig. 10.
To measure the accretion efficiency of particles on to a grow-
ing planet we monitor the evolution of particles that are initially
in a ring just outside the planet. We use the radial range from
xs to 2xs, where xs is the horseshoe half-width as defined, by
Paardekooper & Papaloizou (2009), as

xs = 1.68 Rp

(q
h

)1/2
. (34)

Radial drift brings the particles into the co-orbital region of the
planet. Some of the particles are accreted (and marked so), while
others are able to cross the horseshoe region and are not accreted.
These latter particles enter the inner region of the domain and are
called the survivors. The results of using this procedure for our
simulations are shown in Fig. 11 for the different planet masses
and particle sizes.

For the two larger planet masses (30 M⊕ and 100 M⊕) the
results are not very meaningful because the total number of ac-
creted particles is very small as they have already reached their
isolation masses. Hence, for the growth of planets, we focus on
the two smaller mass planets (5 M⊕ and 10 M⊕). In both cases the
lowest accretion efficiency is reached for particles with Stokes
number τs ≈ 1. For smaller and larger particles the efficiency
rises but due to the very slow drift speeds becomes unreliable
for very small (τs < 10−2) and large particles (τs > 10 − 100).
The result shows that particles with fast radial drift (τs around
unity) have small accretion efficiencies because a high percent-
age of particles can cross the planetary orbit. For Stokes number
τs = 1, we find Peff ≈ 1.6% for the 5 M⊕ and around 3% for the
10 M⊕ planet.

We can compare our measurements to the results of previous
estimates using particle trajectories in the vicinity of the planet.
We use our set-up with the protoplanet located at Rp = 5.2 au.
The radial drift speed is then vdrift = 30 m/s and for the particle
density we have with 1% in solids Σp = 2 g/cm2. To calculate
the efficiency we use eq. (37) from Ormel & Klahr (2010) with
log10 Pcol = 0.5 for the (dimensionless) collision rate, and drop
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Fig. 11. Efficiency of accreted (red line) and survived particles (green line) as a function of Stokes number for different planetary masses. The
laminar disc run is represented with solid lines, while the VSI run with dashed lines. The fit from Lambrechts & Johansen (2014) is overplotted
for intermediate τs values with a dashed grey line (see eq. 40).

the 3D correction. The specific collision rate Pcol is given in this
case by (see their eq. 3)

Ṁcol = PcolΣp RHvH , (35)

where

vH = ΩKRH (36)

is the Hill velocity. For an alternative comparison, we use the
accretion rate in the Hill regime as given in Lambrechts & Jo-
hansen (2012), also in the 2D version

ṀHill = 2ΣpRHvH , (37)

i.e. the ratio of these two is given by 100.5/2 ≈ 1.6. To com-
pare directly to other estimates we can transform our obtained
accretion rates in terms of the Hill accretion rate and define

fHill ≡
Ṁacc

ṀHill
= Peff

Ṁdrift

ṀHill
= Peff π

Rpvdrift

RHvH
. (38)

Applying the definitions of vdrift,RH and vH from eqs. (28, 25)
and (36), one obtains with τs = 1 and η = (H/R)2

fHill ≈ 6.5 Peff

(
h

q1/3

)2

. (39)

Using this equation and our findings for the particle accretion
we obtain the results quoted in Table 3. We notice that our esti-
mates are about 50% lower than the 2D approximation for the
Hill case, but here we also conside the third dimension, which
can lower the amount of particles within the reach of an embed-
ded planet. In Fig. 11 we compare also the accretion efficiency
with the prescription from Lambrechts & Johansen (2014), that
is

Peff,LJ ' 0.034
(
τs

0.1

)−1/3
(

Mc

M⊕

)2/3 ( r
10 au

)−1/2
, (40)

where we see that although our result are slightly lower, the scal-
ing with the Stokes number and planetary masses for the inter-
mediate τs, for which our approach was reliable, is consistent.

From our simulation, we may estimate the mass doubling
time for our low mass planets, for which we use

tdouble =
Mcore

Ṁacc
. (41)

With our results on Peff we find tdouble = 20, 000 yr for the small
mass planets. The region in the disc that can supply this amount
of solid material within the time tdouble extends to roughly 36 au
assuming a constant surface density of solids, Σp = 2 g/cm2.

Fig. 12. Comparison between the average drift speed of the different
dust size particles. These values are calculated at the end of the simu-
lation at R = 1.8 with the analytical drift speed (black solid line), the
migration speed of a 5 M⊕ (dotted line), and a 10 M⊕ (dashed line) mass
planet. The error bars reflect the impact of radial diffusion for the vari-
ous stopping times. The smaller particle sizes in the VSI simulation are
migrating outwards rather then inwards due to the inverse meridional
circulation Stoll et al. (2017a).

7. Discussion

After having presented our main findings we now compare our
results to other studies of particles embedded and accreted onto
a planetary core in MHD turbulent discs. Then we shall discuss
possible limitations of our simulations because in performing the
simulations we had to use several approximations to make them
feasible.

7.1. Comparison to MHD simulations

Recently, Xu et al. (2017) studied the accretion of particles onto
small planets embedded in discs exhibiting magnetically driven
turbulence. These authors considered a local shearing box cen-
tred at the growing core and studied three different types of discs:
a fully turbulent disc using ideal MHD, a less turbulent disc with
ambipolar diffusion, and a non-turbulent hydrodynamic disc. For
all three cases, particles with various Stokes numbers were in-
jected to the flow after reaching equilibrium, and the accretion
rate of particles onto the core was measured. The measured par-
ticle accretion rates were then compared to that in the 2D Hill
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regime as estimated by Lambrechts & Johansen (2012). In all
cases these authors found for Stokes numbers around unity that
their measured rates agree very well (within ≈ 10%) with the
2D accretion rate of eq. (37) in Lambrechts & Johansen (2012)
and argue for a high accretion efficiency. In our simulations we
measure the absolute accretion efficiency as defined in eq. (32)
and this is much lower than one for 10−2 ≤ τs ≤ 1, with an ad-
ditional drop towards τs = 1; see Fig. 11. To compare directly
to Xu et al. (2017) we can use eq. (38) and the values quoted in
Tab. 3, which shows that our calculated accretion rates are about
50% smaller than theirs.

The higher rates obtained by Xu et al. (2017) may be a re-
sult of the relatively small vertical and radial extent of the disc
in their simulations (only one H in each direction) and the fact
that they do not consider a stream of particles through their do-
main. Hence, they measure the transient accretion rate of parti-
cles present initially in the computational box. In our case we
measure the accretion rate of particles in an equilibrium situa-
tion. The absolute accretion efficiency, as defined in eq. (32), is
more important; we measure this rate directly. This is actually
very low, but the combination with the large drift speed allows
us to tap a larger reservoir of particles making the accretion of
τs = 1 particles very useful in the overvall growth process.

7.2. Planet migration

In our simulations, the location of the planet is kept fixed at
5.2 au. However, planets interact gravitationally with their pro-
toplanetary disc, and this usually results in an inwards migration
through the disc, which may modify our conclusions about the
capture efficiency of particles. To check the impact of planet mi-
gration we compare the particle drift rates to the expected planet
migration for which we use the 3D results of D’Angelo & Lubow
(2010) for low mass planets in the linear regime, as stated in
(Kley & Nelson 2012)

tmig = C
M2
?

MpΣg(rp)r2
p

(H
r

)2

Ω−1
K , (42)

where C = 1/(1.36 + 0.62βΣ + 0.43βT). The value βΣ = p − 1
is the coefficient of the surface density profile, while βT = q is
the coefficient of the temperature radial profile. In our models
we used βΣ = 0.5 and βT = 1.0 (see Sect. 4.1) and then we
find C = 0.48. In Figure 12 we compare the dust drift velocity
measured at the beginning of the simulations, when the planet
has not yet perturbed the disc structure, to the theoretical drift
speed (as obtained from eq. 28; black solid line), and the migra-
tion speed of the two small planets (two dashed lines). We can
see that only the tails of the particle size distribution drift slower
than the planets. However, pebble-sized particles have a migra-
tion speed orders of magnitude faster than the planet. Hence, we
conclude that any planet migration does not influence our results
for pebble accretion. For larger mass planets that migrate with
Type II migration, the drift speed slows down considerably, and
their masses are well above the pebble isolation mass. The im-
pact of non-circular planetary orbits on the pebble accretion ef-
ficiency was studied recently by Liu & Ormel (2018) who found
that it can be increased slightly for moderately eccentric orbits.

7.3. Equation of state

In our simulations, we used an isothermal equation of state and
now briefly discuss a possible impact of including radiative ef-
fects. The inclusion of radiative transfer leads to finite cooling

times of the gas that lowers the efficiency of the VSI-driven tur-
bulence (Nelson et al. 2013). In full simulations that include ra-
diative transfer it has been shown that in irradiated discs an ef-
ficiency of α ≈ 10−4 can be reached (Stoll & Kley 2014, 2016),
while Flock et al. (2017) find a somewhat smaller value. All
those simulations apply to larger distances from the star and
it remains to be seen what the VSI-efficiency is at shorter dis-
tances from the star. In any case, a reduced turbulence level leads
to a concentration of the dust particles in the midplane, which
might enhance the accretion process. On the other hand, the in-
clusion of radiative transfer allows for additional disc heating by
the planet (by the spiral waves), which enhances the disc tem-
perature and might lead to partial evaporation of the particles.
However, for the lower mass planets, for which the dust accre-
tion efficiency is higher, the effect on the disc is not be that strong
and we do not expect a large impact. Additionally, the dust clear-
ing around the planet alters the opacity of the medium and hence
the radiative transport. These impacts of radiative transport and
the link to observations have to be investigated in more detail by
future simulations.

7.4. Dust feedback

In our simulations we have neglected the backreaction of the dust
onto the gas. Within a disc without an embedded planet the par-
ticle concentrations are such that the dust density remains typ-
ically smaller than the gas density, given an initial dust to gas
ration of 1/100. In the presence of a planet, this is not true in the
case of filtering because then the dust density can equal the gas
density near the pressure maximum. This situation has recently
been explored by Weber et al. (2018), who showed that dust
feedback can potentially displace the gas density maximum, and
thus the pressure maximum, outwards. Additional dust diffusion
(for example from disc turbulence) can smooth the density peak
of the dust distribution, altering the dust filtration process for
particles with Stokes numbers around unity. However, concern-
ing the filtration ability, which also affects pebble accretion onto
the planet, they did not observe any difference by adding dust
feedback. Hence, we conclude that dust feedback does not im-
pact our results significantly. In a realistic scenario, where a dust
size distribution is present, this effect is even less pronounced.
The impact of dust feedback onto the dust dynamics in the dust
trap itself will have to be investigated in more detail in the future.

7.5. Numerical convergence

Our hydrodynamical simulations are performed with one numer-
ical resolution as given in Table 1. This is based on our results
in Stoll et al. (2017b) in which we studied the effect of doubling
the grid resolution on the VSI and found no noticeable differ-
ences in the disc dynamics. The calculated αSS close to the inner
boundary (see their Figure 1) was increased marginally, however
it had no effect at the location of the planet. We also checked in
Stoll et al. (2017b) that the torque acting onto the planet reached
a constant value (see their Figure 6), guaranteeing that the model
was run long enough for the disc-planet system to have reached a
quasi-stable state. The obtained torque distributions on the planet
were also identical for the standard resolution (used here) and
the simulations with doubled resolution. The dust dynamics is
not affected by numerical resolution since we did not take into
account their backreaction on the gas. Thus, we do not expect
that our results on accretion efficiencies and dust dynamics in
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the vicinity of the planet are impacted by resolution that is too
low.

8. Conclusions

In this study we have modelled the dynamics of a broad range of
solid particles, ranging from 100 µm dust particles to kilometer-
sized planetesimals, interacting with a growing planetary core
in a 3D globally isothermal disc. By modelling a global disc,
we were able to take into account the effect of MMRs for
planetesimal-sized objects and the enhanced particle density in
spiral arms and vortices. The turbulence driving the disc evolu-
tion has been modelled both self-consistently through the VSI in-
stability and with an alpha parameter derived from the VSI simu-
lation where the turbulence has been recreated in the particle dy-
namics by adding random kicks to their motion. We determined
the solid accretion rate onto the planet after it reaches a stable
state averaging the values over 50 planetary orbits in Fig. 9.

The actual growth rates in particles that a planet can achieve
depends on the particle size distribution. In our study, we sample
the particle dynamics in ten different size bins. One can convolve
this result with a model of dust size distribution to obtain a mass
accretion rate onto the planet. We observed a peak in the absolute
number of accreted particles in the range of pebble-sized objects
(100 cm) with Stokes number of order unity, but the strength of
this effect depends strongly on the chosen dust size distribution.
Concerning the accretion efficiency we find that the minimum ef-
ficiency is reached for particles with τs = 1, where Peff = 0.016
and 0.03 for the planets with masses 5 M⊕ and 10 M⊕, respec-
tively. For smaller and larger particles the efficiency rises but
due to the rapid inwards drift of particles with τs = 1, we find
that the optimal particle size for pebble accretion for our massive
cores is about one metre at the orbit distance of about 5 au. If all
the solid material in the disc was this size range, the mass dou-
bling time would be around 20,000 yrs. We find that the obtained
accretion efficiencies are very similar for the VSI turbulent disc
and the laminar disc models, one has to keep in mind however
to add the stochastic kicks to the particles for the viscous model.
This similarity can be attributed to the fact that the overall turbu-
lence generated by the VSI is relatively weak such that the disc
structures are very similar, despite the occurrence of vortices in
the VSI case.

The accretion efficiency found in our simulations agrees rea-
sonably well with previous results, for example, the 2D approx-
imations of Ormel & Klahr (2010) and Lambrechts & Johansen
(2012) or the 3D turbulent simulations of Xu et al. (2017) who
found similar results for particles with τs = 1. To obtain the effi-
ciencies of very small or large particles exactly one needs longer
integration time due to the very slow radial drift. Concerning the
pebble isolation mass of a growing planet we confirm that the oc-
currence of a pressure maximum in the gas created by the planet
is sufficient to filter particles with Stokes numbers of unity ef-
ficiently, at least for the relatively weak VSI turbulence. Hence,
using purely hydrodynamical studies the dependence of the iso-
lation mass on the viscosity and pressure scale height of the disc
has been examined recently to obtain scaling relations (Bitsch
et al. 2018).

The treatment of the turbulence adopted for the particles in
the laminar disc produced accretion rates in good agreement with
those of the self-consistent VSI treatment. The impact of ra-
diative transfer within the disc and the migration of the planet
through the disc were not treated. These topics need to be ad-
dressed in future work.
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Appendix A: Long-term two-dimensional integrations

Fig. A.1. Ratio of the azimuthal gas velocity to the Keplerian value for a 2D disc with an embedded 10 M⊕ planet at different times after insertion
of the planet. The simulation in the left panel uses a viscosity of α = 10−4 and the right α = 5 × 10−4.

In Figure 4 above we displayed the ratio of the angular velocity of the gas to the Keplerian velocity for the different planet
masses and compared the turbulent case to the viscous laminar case. From this, we argued that the occurrence of super-Keplerian
flow can be taken as an indication of having reached the isolation mass for that particular planet. However, this argument is only
valid if the equilibrium of the flow has already been reached and does not change in time significantly anymore. For a viscous disc
with a kinematic viscosity ν, the viscous timescale is given by

τν =
∆r2

ν
, (A.1)

where ∆r2 is the spatial region under consideration. Assuming an α-type viscosity with ν ∼ αΩKH2 and ∆r = fHH one finds for the
viscous timescale

τν =
f 2
H

2πα
PK , (A.2)

where PK is the Keplerian period. The maximum of Ω occurs roughly at a distance of ∆r = 2H in our case and for fH = 2 eq. (A.2)
gives an equilibration time of over 1200 orbits. To run our computations in full 3D for such a long timescale would have been too
costly and we investigated this issue by performing comparison 2D simulations of planets embedded in flat discs. For these, we
used a 10 M⊕ planet and two different effective viscosities, α = 5 × 10−4 and a lower viscosity case using α = 10−4. The results
are shown in Fig. A.1. While for the low viscosity case the flow becomes super-Keplerian, the model with α = 5 × 10−4 remains
sub-Keplerian throughout. From this, we infer that in VSI turbulent discs with an effective α = 5× 10−4 the isolation mass is indeed
above 10 M⊕ as found in the full 3D simulations presented above.

Appendix B: Integrator

We used two different integrators to evolve the Lagrangian particles, based on their coupling with the gas dynamics.

Appendix B.1: Semi-implicit integrator in polar coordinates

The dynamics of particles well coupled to the gas, which have a stopping time much smaller than the time step adopted to evolve
the gas dynamics, is described by adopting the semi-implicit Leapfrog (Drift-Kick-Drift) integrator described in Zhu et al. (2014)
in polar coordinates. This method guarantees the conservation of the physical quantities for the long-term simulations performed in
this paper and, at the same time, it is faster than an explicit method.
The variables are updated beginning with a first half drift

Lr,n+1 = Lr,n , Lθ,n+1 = Lθ,n , Lφ,n+1 = Lφ,n .

rn+1 = rn + Lr,n
dt
2
, θn+1 = θn +

1
2

Lθ,n
r2

n
+

Lθ,n+1

r2
n+1

 dt
2
, φn+1 = φn +

1
2

Lφ,n
R2

n
+

Lφ,n+1

R2
n+1

 dt
2
,
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followed by a kick step

rn+2 = rn+1 , θn+2 = θn+1 , φn+2 = φn+1 .

Lφ,n+2 = Lφ,n+1 +
dt

1 + dt
2ts,n+1

[
−

(
∂Φ

∂φ

)
n+1

+
Lφ,g,n+1 − Lφ,n+1

ts,n+1

]
,

Lθ,n+2 = Lθ,n+1 +
dt

1 + dt
2ts,n+1

1
2

cos(θn+2)
sin(θn+2)

(Lφ,n+1

Rn+1

)2

+

(
Lφ,n+2

Rn+2

)2 − (
∂Φ

∂θ

)
n+1

+
Lθ,g,n+1 − Lθ,n+1

ts,n+1
+

 ,
Lr,n+2 = Lr,n+1 +

dt
1 + dt

2ts,n+1

 1
2rn+2

(Lφ,n+1

Rn+1

)2

+

(
Lφ,n+2

Rn+2

)2

+

(
Lθ,n+1

rn+1

)2

+

(
Lθ,n+2

rn+2

)2 − (
∂Φ

∂r

)
n+1

+
Lr,g,n+1 − Lr,n+1

ts,n+1

 ,
and, for the laminar disc case, also a random kick, i.e.

rn+2 = rn+2 + δrd,T , θn+2 = θn+2 + δθd,T , φn+2 = φn+2 + δφd,T .

Finally, a second half drift follows as the first half drift.

Appendix B.2: Fully-implicit integrator in polar coordinates

For particles with stopping time much smaller than the numerical time step, the drag term can dominate the gravitational force
term, causing the numerical instability of the integrator. Thus, it is necessary to adopt a fully implicit integrator following Bai &
Stone (2010); Zhu et al. (2014).

We begin with a predictor step for the particle positions

r′ = rn + Lr,ndt , θ′ = θn +
Lθ,n
r2

n
dt , φ′ = φn +

Lφ,n
R2

n
dt .

followed by a shift for the momenta

Lφ,n+1 = Lφ,n +
dt/2

1 + dt
(

1
2ts,n

+ 1
2ts,n+1

+ dt
2ts,nts,n+1

) · [ − (
∂Φ

∂φ

)
n
−

Lφ,n − Lφ,g,n
ts,n

+

+

(
−

(
∂Φ

∂φ

)
n+1
−

Lφ,n − Lφ,g,n+1

ts,n+1

)(
1 +

dt
ts,n

)]
,

Lθ,n+1 = Lθ,n +
dt/2

1 + dt
(

1
2ts,n

+ 1
2ts,n+1

+ dt
2ts,nts,n+1

) · [ − (
∂Φ

∂θ

)
n
−

Lθ,n − Lθ,g,n
ts,n

+
cos(θ′)
sin(θ′)

(
Lφ,n
R

)2

+

(
−

(
∂Φ

∂θ

)
n+1
−

Lθ,n − Lθ,g,n+1

ts,n+1
+

cos(θ′)
sin(θ′)

(L′φ
R′

)2 )(
1 +

dt
ts,n

)]
,

Lr,n+1 = Lr,n +
dt/2

1 + dt
(

1
2ts,n

+ 1
2ts,n+1

+ dt
2ts,nts,n+1

) · [ − (
∂Φ

∂r

)
n
−

Lr,n − Lr,g,n

ts,n
+

1
rn

L2
φ,n

R2
n

+
L2
θ,n

r2
n

 +

+

(
−

(
∂Φ

∂r

)
n+1
−

Lr,n − Lr,g,n+1

ts,n+1
+

1
r′

L′2φ,n+1

R′2
+

L2
θ,n+1

r′2

 )(1 +
dt
ts,n

)]
,

a turbulent kick for the laminar disc case

rn = rn + δrd,T , θn = θn + δθd,T , φn = φn + δφd,T ,

and finally a corrector step for the particle positions.

rn+1 = rn +
1
2

(Lr,n + Lr,n+1)dt , θn+1 = θn +
1
2

Lθ,n
r2

n
+

Lθ,n+1

r2
n+1

 dt , φn+1 = φn +
1
2

Lφ,n
R2

n
+

Lφ,n+1

R2
n+1

 dt .
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